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Geometrical edge barriers and magnetization in superconducting strips with slits
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We theoretically investigate the magnetic-field and current distributions for coplanar superconducting strips
with slits in an applied magnetic field,. We consider ideal strips with no bulk pinning and calculate the
hysteretic behavior of the magnetic momemjtas a function oH, due solely to geometrical edge barriers. We
find that them,-H, curves are strongly affected by the slits. In an ascending fieldmthEl , curves exhibit
kink or peak structures, because the slits prevent penetration of magnetic flux. In a descending, field,
becomes positive, because magnetic flux is trapped in the slits, in contrast to the behavior of a single strip
without slits, for whichm,~0.
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I. INTRODUCTION magnetic flux penetrates and escapes along thés, assum-
ing that there is no flux penetration from the ends|zt
Superconducting flat strips subjected to a perpendicular-c. (We may think of the strip ends as being connected by
magnetic field show magnetic hysteresis, even when theuperconducting shuns.
strips have no bulk pinning. The magnetic hysteresis of strips The Biot-Savart law for the complex figt&% +(¢)
without bulk pinning arises from geometrical edge barriers,=H,(x,y)+iH,(x,y) as a function o =x+iy in the thin-
i.e., barriers for magnetic-flux penetration at the stripstrip limit d/a—0 is expressed as
edgest~® Current-carrying strips have finite critical currents
arising from the edge barriefsand the critical current be- +a  K,(u)
comes larger when slits are fabricated near the edges of the H({)=H,+ 2—f du——-o,
strips® The critical-current increase is due to the enhance- TJ-a {-u
ment of edge-barrier effects; in other words, making slits o ] ) ]
increases the number of edges that prevent flux penetratiohere the m%%?z‘?“c field, is applied parallel to thg axis,
into the inner strips. The reversible magnetic response of tw8Nd K(X) =J Zg3i,(x,y)dy is the sheet current along tfze
strips (i.e., a strip with a slitin the Meissner state was con- axis. In Secs. IV and V we show distributions of magnetic
sidered in Refs. 9 and 10. When an applied magnetic fieldield Hy(x,0)=ReH(x)] and currentK,(x)/2= 3 H,(X,
exceeds a certain value, magnetic flux penetrates into th& 0)=+Im[#(x=i0)]. The multipole expansion of Eq1)
strips and the magnetic response becomes irreversible afi@r [{|/a—= is expressed as
hysteretic?
In this paper, we present a theoretical investigation of the (a) y
magnetic hysteresis of bulk-pinning-free strips with slits in A d
the presence of an applied magnetic fielg. The hysteretic l
behavior of the magnetic moment, as a function ofH,
shown in this paper is due solely to the geometrical edge
barriers. In Sec. Il we outline our theoretical approach and
establish notation. In Sec. Il we briefly review published (b)
results of them,-H, curves of a single strip without slits. In
Sec. IV we investigate field distributions ant-H, curves —
of two strips(i.e., a strip with a sli and in Sec. V we study . -»
three stripgi.e., a strip with two slits We briefly summarize
our results in Sec. VI.
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Il. COMPLEX FIELD AND MAGNETIC MOMENT ld

—-a -b -—c T+C +b  +a

_—

We investigate coplanar superconducting stfifs, strips
in which slits are fabricated parallel to the edgesa per-
pendicular magnetic field but carrying no net transport cur-
rent. The strips under consideration have total widty 2 FIG. 1. Cross sections of strips with total widtfa 2nd thick-
thicknessd<2a, and infinite length along the axis (i.e.,  nessd: (a) single strip without slit,b) two strips(i.e., strip with a
|x|<a and|y|<d/2), as shown in Fig. 1. We assume that slit), and(c) three strips(i.e., strip with two slit3.
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wherel,=[T2dxK,(x) is the transport current along tize
axis andmy=ff§dx(—x)KZ(x) is the magnetic moment in

they direction per unit length. In this paper we consider the

hysteretic relationship between, andH, of strips carrying
no net currentl(,=0).

The complex field for symmetrically arranged strips has

the general fornje.g., Eqs(6), (14), and(34)]

2 2
g_a’n

H({)=Ha, ﬁ,

Il

where the strip edges are at*+a,. The parametew,
generally depends oA, . Equation(3) may be expanded as

)

H
H(O)—Hat — 2 (ah—ad)+- . (4)
2% n
Comparing Eq(4) with Eq. (2), we obtain a general expres-
sion for the magnetic moment per unit lengdjeng., Eqs(7),
(15), and(39)],

©)

my=— WHa; (aﬁ— aﬁ).

WhenH, is small enough, such that the local magnetic
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FIG. 2. Schematic of the magnetization curves, versusH,,
for a single strip. The vertical dashed lines correspond to the char-
acteristic fieldsH, and H;,. The horizontal arrows show field-
evolution steps of0), (i), (i), and(iii).

tion depth\ is small \ <d) or the two-dimensional screen-
ing length A=2)\%/d when \ is large 0>d); i.e., &
~max@d,A).

For a single strip, the field-evolution process proceeds in
four steps, as shown in Fig. 2: sté) for 0<H,;<H,, step
(i) for Ho<<Ha;<Hj,, step(ii) for H,>H;,, and stepiii )
for 0<H, <Hj,. Details of the field-evolution steps are
described in the following Secs. 11l B and Il C.

B. Single strip in an ascending field

Step (0) forO<H,;<Hy. When a magnetic fieltH, is

fields at the strip edges are all less than the flux-entry fieldncreased after zero-field cooling, the superconducting strips
Hs,*"®the superconducting strips are in the Meissner stat@re initially in the Meissner state. The magnetic field at the
and no magnetic flux penetrates into the strips. References@ges is less than the flux-entry fiekd [i.e., Hy(a,,0)

and 10 describe the linear reversible magnetic response
two strips in the Meissner state. On the other hand, vihgn
is sufficiently large to make the edge fields re&th mag-

netic flux penetrates into the strips, and the magnetic re-
sponse becomes irreversible and hysteretic. In Secs. llI-V

we determine the parameteds, and the magnetic moment
my as _functions ofH, in ascending Ki,;) and descending
(Hy)) fields.

[ll. SINGLE STRIP WITHOUT SLITS
A. Complex field for a single strip

In this section we consider a single strip of width,2as
shown in Fig. 1a). The complex fieldH({) and the mag-
netic moment per unit lengtin, for a single strip are given

by*

- o?
H({)=H, ﬁ, (6)
my,=— mH (82— a?). (7)

For convenience we introdu@e. =a=* §, whereéd is a cut-
off length on the order of the thicknesswhen the penetra-

ofHg], and the edge barriers neas + a prevent penetration
of magnetic flux. In this stef0), the parameter in Ed6) is
a=0, and the magnetic moment is given by
m,/m=—H,a%

®

Magnetic flux cannot penetrate into the strips so long as
Hy(a;,0)<Hg for H,<H,, but step(0) terminates when
Hy(a,,0)=Hs atH,=Hy,

ya2 —a? \/2\5
a, Va’

where the second equality is valid féfa<<1.

Step (i) for Hy<H,; <Hj;. WhenH>H,, magnetic flux
nucleates at=*a and penetrates into the strip. A domelike
distribution of magnetic flux exists fgx| < «; and grows as
H, increases. The parameter «; in Eq. (6) is determined
by Hy(a+,0)= Hs,

Ho

b ©

a?=a% —(H/H,%(a% —a?)=a’—2da[ (Hg/H,)?—1].
(10

The magnetic moment is given by

m,/m=—Ha(a?—af)=2(H,—HZHyas. (11
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Step(i) terminates whemv,=a_ atH,=H;,, where my
; ; two strips
—a? 2a+ 5
(12) ;
a —a :
Step (ii) for H,>H;,. The domelike distribution of mag-
netic flux expands to include almost all of the strip, and the Hye
strip’s magnetic response is reversible fdg>H;,. The ; H,
edge field aH,=H;, is given byH,(a, ,0)=H;. §
3
C. Single strip in a descending field ' ()
Step (iii) for 0<H,,<H,. In a descending field, mag- KoY _
netic flux escapes from the strip, but a domelike distribution (i) (ii) '

of magnetic flux remains in the strip. The detailed behavior

of the field distributions anch, in descending fields depends G, 3. Schematic of the magnetization curves, versusH,

upon the treatment of edges of a sttif.Here we adopt a for two strips. The vertical dashed lines correspond to the charac-

simple model and pu=a_, which results in a domelike teristic fieldsHo, Hy, Hir, Hs, Hs, and—H,. The horizontal ar-

distribution of magnetic flux fofx|<a_. and a small but rows show field-evolution steps ¢®), (i), (i), (iii), (iv), (v), and

sharply peaked current density flowing in the vicinity of the (vi).

edgesa_<|x|<a. The magnetic moment is given by

step(i) for Ho<H,;<Hj, step(ii) for H;<H, <Hj,, step

(iii) for Hya>H;,, step(iv) for H,<H, <Hj,, step(v) for

which qualitatively agrees with that predicted by more de-Hs<H, <H,, and stefvi) for —H;<H, <Hs. Details of

tailed investigations™> the field-evolution steps are described in the following Secs.
Note thatm, takes a very small negative valee., 0 VB andIVC.

<-m <Hsa2) because a single strip cannot trap any mag-

netic flux in a descending field. Geometric edge barriers in a B. Two strips in an ascending field

single strip without slits do not prevent escape of magnetic - .
flux. At H,=0 magnetic flux is entirely removed from a Step (0) for0<Hay<Ho. When a magnetic field, is

single strip, resulting in zero remanent magnetic momen?ppl.'e.?. T}ftgr fﬁrod'eld COO“P%’ ﬂ_}i supercortw_dufptllgg Sttrt'ﬁs
m,=0 atH, =0. For strips with slits, on the other hand, &'¢ NM&TY 1N e MEISSAST s ate. 'he magnetc eids atthe

. . : : " edges are less than the flux-entry field<® H,(b_,0)
magnetic flux is trapped in the slits, ang becomes positive . YA TS
in descending fields, as we show in Secs. IV and V. <I_—|y(a+_,0)<HS and no magnetic flux penetrates Into the
strips. Figure £a) shows distributions of the perpendicular

V. TWO STRIPS field Hy(x,0) and currenk,(x)/2= +H,(x,*=0) in step(0).
: (STRIPS WITH A SLIT ) The parameters in Eql4) are given bya= 8= ay<b. Be-

A. Complex field for two strips cause the total magnetic flux in the slit is zero,
fngy(x,O)dx=0, the parametes is determined as

my/m=—Hy(a?—a%)=—2H,as, (13

In this section we consider two striggse., a strip with a
single sli) of total width 2a, as shown in Fig. (). The
superconducting strips are b |x|<a, and the slit is cen-
tered between the stripgx|<b. We assume that the two
strips are connected at the endlg ) by superconducting
shunts, such that an applied magnetic field induces a
circulating current in the two stripf~2K,dx=— [ 78K dx
#0. General expressions for the complex field and the mag- - 2,12 52
netic moment per unit length for two strips are giverthy my/m Ha(@"+ b7~ 2ap). an

a3=a’[1—E(b/a)/K(b/a)], (16)

whereK (k) and E(k) are the complete elliptic integrals of
the first and second kind, respectively. The magnetic moment
is given by

Step (0) terminates whenH,(a,,0)=H at H,=H,,

(2= a?)(%~ ) h
H(g):Ha\/(gz—az)(gz—bz)' (14) ~ Where

Ho Vfi(a,) v2sa(@®-b?)

m,= — mH,(a%+b%— o?— B?). (15) He 22-a?  a-a? (18)
In this section we use parametets=ax* d andb.=b=* 6
[where §~max(d,A)], and define the functiorf,(x)= (x> Step (i) for Hy<<H,; <H;. During this step, magnetic flux
—a?)(x2—Db?) for convenience. nucleates at the outer edges<(+a), flows inward across

For two strips, the field-evolution process proceeds inthe strips, and penetrates into the slit. Thus, we have
seven steps, as shown in Fig. 3: st@p for 0<H,;<Hy, Hy(a,,0)=Hs and ffBHy(x,O)dx>O. The field distribu-
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3 f - FIG. 4. Field distributions oH,(x,0), shown
= 02 | as black lines, andK,(x)/2=FH,(x,*0),
iyt . step (0)

shown as gray lines, in two strips for whidiia
=0.5: (@ 0<Hgz <Hq, (b) Hy=Hy, (0) H;
<HaT<H|rrn (d) H4<HaL<H|rrv (e) Hai H4,

+0.4

:f%m,z, _ __ | ___ qt J and(f) Hs<H, <H,. The horizontal dot-dashed
< N b lines show the applied magnetic fiettl, .
S i
= !
-0.2+ ! :
i : step (IV) ' qg : /‘S\tep )
—a —b 0 +b +a —a -b 0 +b +a —a —b 0 +b +a
tions in step(i) are similqr to those in Fig.(4). The param- my /7= —Hy(a?+b?—a5—b?)
etera= B= a, is determined byH,(a,,0)=Hs,
=—2(H2/H,)as+2H (a+b)s. (23)
af=a% — (Hs/Ho)Vfa(a.)=a’— (Hs/Ha) V25a(a”—b?). I . -
(19) Step (ii) terminates wherw,=a_ at the irreversibility
field H,=H,,=H/\/2, when domelike flux distributions es-
The magnetic momemn, is given by sentially fill the strips. The domes occupy the regidns
<|x|<a_.
myla-r:—Ha(a2+ b2—2a§) Step (iii) for Hy>H;,. When H,=H,,, domelike flux

distributions fill the region® , <|x|<a_, and the magnetic
=H,(a’—b? —2H¢y25a(a’*—b?. (200 response becomes reversible. A=H;,, the magnetic
fields at the strip edges ak,(a,0)=H,(b_,0)=H, and

Step(i) terminates whemy;=b, atH,=H,, where the parameters are given ly=a_ and 8=b_ . The mag-
netic momentm,, which is due to currents flowing in the
@) narrow regions near the edgeb<(|x|<b, and a_<|x|
i a+ 25a (22) <a), is given by
Hs —
m, /7= —H(a®+b*-a® —b%)=—2H;(a—b)s.
The field distribution aH,=H is shown in Fig. 4b). (24
Step (i) for H;<H,;<Hj,. During this step, magnetic
flux penetrates fromx=*a, because Hy(a+,0) H, When H,>Hj,, the magnitude ofn, is reduced below

Domelike distributions of magnetic flux appear in the strlpsthat given in Eq.(24), because the current-carrying regions
atb, <|x|<a, [Fig. 4(c)], and grow a#H, increases. Mag- near the edges become narrower. However, a more detailed
netic flux simultaneously exits the superconducting stripgheory beyond the scope of the present approach would be
at x==*b and enters the slit. Current spikes occur nearrequired to calculaten, for H,>H;, .
x==*b in Fig. 4(c) because a finite curremt,#0 flows in
the V|C|n|ty of the inner edgeSb<|X|<b+ , Whel’eaSKz C. Two Strips in a descending field
=0 for b, <|x|<a,. In our theory, such current spikes, . -
which produce wiggles in the local magnetic field distribu- Step (iv) for H<Ha <Hi,. If the applied fieldH, ha_s
tion, always occur where magnetic flux is exiting from a Pe€N aboveH;; and now decreases througy,, magnetic.
dome in a superconducting strip. flux is ex.pelled from the slit and penetrates into the strips

The parameters are given by=a, and 8=b, , where from the inner edge at=*D, becau_se the mner-edge field
a, is determined by (a.,0)=H,, H,(b_,0) is equal to the flux-entry fielths. Magnetic flux

y in the strips escapes from the outer edgexat-a. The

domelike flux distributions aB,<|x|<a_ shrink asH, de-

2_ Hs\? fa(ay) ) 2 creases$Fig. 4d)]. Current spikes occur near=*a in Fig.
@p=ay Ha) a2 —b2 a’—20a[(Hs/Ha)"~1]. 4(d) because a finite curremt,+0 flows in the vicinity of
(22)  the outer edgesa_<|x|<a, whereasK,=0 at B,<|x|
<a_. The parameters are given hy=a_ and 8= f,,

The magnetic momemn, is given by where S, is determined byH,(b_,0)=Hs,
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He\2fa(b_)
2_ 1.2 s 2 2 2_
(29
The magnetic momemn, is given by S
=
my/m=—H,(a?+b?—a’ — 53) £
=2(H2/Ha)bs—2H,(a+b)s. (26) 7 ... single strip
~ bla=0.1
Step(iv) terminates and the domelike field distributions in —05 7 V4 — bla=0577 |
the strips disappear whe,=a_ at H,=H, [Fig. 4(e)], \V4 — bla=09
where 02 0 02 04 06 08
H,JH,
Hy fa(b ) 2bs /
H_s: a2 —p2? = a2—p? (27) FIG. 5. Hysteretic behavior of the magnetic momentof two

strips as a function of the applied magnetic fielg. Magnetization

. . e curves of a single stripdashed linesand two stripgsolid lineg for
Step (v) for H<H, <H,. During this step, positive b/a=0.1, 0.577, and 0.9. The thickness of the stripsdia

magnetic flux exits from the slit, penetrates into the strips_

. . 0.01.

from the inner edges ax=*b, flows outward entirely
across the strips, and annihilates at the outer edges (
=*a), whereH,(a. ,0)<0. The field distribution is shown —H* Jfy(ay)  [2(a%-b%)s
. y = = . (31
in Fig. 4(f). Hs a2 a®

The parametera= 3= as is determined byH,(b_,0)
=H,, The magnetic field at the center of the sfit(0)=H(0,0)

=H,aplab, obeysH(0)>0 for Hy >H*, and H(0)<0
a2=b% + (Hg/H)Vfo(b_)=b%+(H/H,)V26b(a?—b?).  for Hy <H*.
(28) Behavior for H,) <—H;. The magnetic response of two
i strips forH, <—H, in descending fields is very similar to
Note thatas is real (and as>a.) for 0<H,<Hy, thatas  the response foH,,>H, in ascending fields. The complex
— for Hg— +0, and thaws is imaginary(i.e., a5<0) for  field 74(£,H,) and magnetic momemn,(H,) in descending

Hs<H,<0. The magnetic momemn, is given by field can be determined from the ascending-field results with
the help of the symmetrie®(({,H, )= —"H({,—Hy;) and
my /m=—Hga(a’+b?~ 2a3) my(Ha ) =—my(—H,;), respectively.

=—H,(a?—b?)+2H/26b(a’—b?). (29

Even whenH <0, positive magnetic flux is still trapped in
the slit, and the magnetic moment is positive.

Step (v) terminates wherH,(a,,0)=—Hg at H,=Hs
<0,

D. Magnetization curves of two strips

Figure 5 shows hysteretio, versusH, curves for two
strips. In ascending fieldd ,; , the sheet currer,(x) con-
centrates near the outer edges of the strips=at-a [Figs.
4(b) and 40)], and therefore, even for largea, them, for
1 two strips is almost the same as that for a single strip except

_ at low fields,H,/H¢=0.2.
2 —bz_[\/fZ(a” Vfa(b-)] In descending magnetic fields,,, we see in Fig. 5 a
striking difference betweem,>0 for two strips andm,
26 ~0 (i.e., 0<—my< H.a?) for a single strip. The inner edges
22— bZ (30) of the two strips ak= *=b are responsible for the large posi-
tive magnetic moment. The edge barriers near+b pre-
vent magnetic-flux penetration from the slit regipq<b
into the superconducting regidn< |x| <a. Magnetic flux is
therefore trapped in the slit as shown in Fig&d)4-4(f), and
éhe magnetic moment becomes positive, > 0).

The remanent magnetic moment,,,,is given by Eq.(29)

with H,=0,

_H5_
He

+

=(a=\b)

Step (vi) for—H;<H, <Hs. During this step, negative
magnetic flux(i.e., flux lines aligned along the-y axi9
penetrates into the strips from the outer edges fa),
flows inward entirely across the strips, and annihilates at th
inner edges X=*b), whereH(b_,0)>0. The parameter
a= = ag is determined byH,(a,,0)=—Hs, and is given
by ag(H)=a1(—H,), where a,(H,) is defined in Eq. — J25b(a2—b?)

(19). Note thatag is imaginary(i.e., a3<0) for H*<H, Miem/ m=2Hsy20b(a”~b"), (32
<Hs, and that < ag<b, for —H;<H,<H*, whereH,is  which is maximized wher/a=1/\/3~0.577. If the slit is
defined in Eq(21) and made wider,m,., increases ad/a increases for &b/a
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ey for Hy>Hy,, step(v) for Hs<H, <H,,, step(vi) for Hg
.(Viii) y three strips <H, <Hs, step(vii) for H;<H, <Hg, step(viii) for Hg
4(—Vf) (vi) | . <H, <H, and steffix) for —H;<H, <Hjg. Note that the

step (ii) corresponds to eithe(ii-A) for Hija<H, <Hjp
whenb?<a?—ac+c?, or (ii-B) for Hjg<H,; <H,g when
b%2>a?—ac+c?. Details of the field-evolution steps are de-
scribed in the following Secs. VB and V C.

(ix);;

Hg H B. Three strips in an ascending field

Step (0) forO<H,;<Hy. When a magnetic fieldH, is
applied after zero-field coolinfstep(0)], the superconduct-
Pl (iii) i ing strips are initially in the Meissner state. Figuréa)7

(0) (i) shows the distributions oH,(x,0) and K (x)/2= ¥ H(X,

@ i ' +0). The parameters in E¢34) are a=B=ay and y=0,

FIG. 6. Schematic of the magnetization cur versusH ot o o e (1o 1ot magnetic fluxin the siits s
6. g VET;, & zero, [oHy(x,0)dx=0, we find that

for three strips. The vertical dashed lines correspond to the charac-
teristiC fleldS Ho, Hl:(HlA or HlB)! HZZ(HZA or HZB)’ Hirrr

2_ A2
Hg, Hg, H,, Hg, and —H,. The horizontal arrows show field- a2=a2—(a2—c2)E(k) K= b*—c 36
evolution steps of0), (i), (i), (ii), (iv), (v), (vi), (vii), (viii), and 0 K(k)’ a2—¢c?
(ix). The step(ii) corresponds to eithe(ii-A) when b?<a?—ac ) )
+c2 or (ii-B) whenb?>a%—ac+c2. The magnetic moment is

— 2 12, A2 9,2
<1/y/3, because the slit can trap a larger amount of magnetic my /7= —Ha(@"+b"+c"~2ap). (37

flux. If the slit is too wide, howeverm,.,, decreases for
1/\/3<b/a<1, because the superconducting stips., the

current-carrying regionbecome too narrow. A similar be-
havior occurs for the peak of the magnetic momemnt,, Ho Vis(ay) V28a(a®—b?)(a’—c?)
which occurs aH,=Hs. Equations(29) and (30) yield T =

Hs_a+(aﬁ—a§)_ a(a?-ap)
Mpead 7=H4(Va+ \Vb)V2(a?-b?)s, (33

Step (0) terminates whenH,(a,,0)=Hs at H,=H,,
where

(39

Step (i) for Hh<H4;<(H1a or Hyg). In this step, mag-

which is maximized whet/a~0.403. netic flux nucleates at the outer edges, +a, flows inward
across the outer strips, and penetrates into the slits; that is,
V. THREE STRIPS (STRIPS WITH TWO SLITS ) Hy(a,,0)=Hs andeHy(x,O)dx>0. However, no magnetic

flux penetrates into the inner strip becals$g(c,0)<Hs.
The parameters are given lay= 8= a4, and y=0, wherec

In this section we consider three strifise., strips with  <qa,<b, . The value ofa; is determined fromH,(a. ,0)
two slits) of total width 2a, as shown in Fig. (). The outer =H_,

strips are ab<|x|<a, the inner strip is atx|<c, and the

A. Complex field for three strips

slits are atc<|x|<b. The strips are connected at the ends, a?=a% — (Hs/H)Vfs(a,)/a,
|z|—<, so that a circulating current flows in the outer strips, ) ——————
JZPK,dx=—[T2K,dx#0. The inner strip carries no net ~a?—(Hs/Hy)\2(a’~b?)(a’~c?)sla. (39

current, [ “SK,dx=0. The general expressions for the com-The magnetic moment, is given by
plex field and the magnetic moment per unit length for three

strips are my/m=—H,(a%+b?+c?—2a7)
—_ 2_h2_ A2\ __ 2_RKh2 2__ A2
H(g):H (gZ_aZ)(gz_BZ)(§2_72) ( ) —+Ha(a b C ) 2HS\/2(a b )(a C )5/3.
N (2-a)( b)) () 40
The sign ofdm, /dH,= m(a?~b?—c?) can be either posi-
my = —TrHa(a2+ b2+ Cz—az—ﬁz— 72)- (39 tive or negative, depending upon the relative widths of the
strips.

In this section we use parametexrs=a= &, b.i=bi 0, Step (i) terminates when eithew;=b, at H,=Hq, or
andc.=c=* 4, whered~max@d,A). We also define a func- Hy(c,,00=Hs at Hy=H,5. The characteristic fieldsi;,

tion f4(x)=(x?>—a?)(x2—b?)(x2—c?) for convenience. andH 5 are given by
For three strips, the field-evolution process proceeds in
ten steps, as shown in Fig. 6: st for 0<H,,<H,, step H fia.) 2(a2—c2)s
(i) for Ho<Ha;<Hy=(H0r Hyg), step(ii) for H;<H,, HlA: 32( +)2 ~ ( - 2) , (41)
<H,=(H240rH2g), stepliii) for Hy,<Hg; <Hy,, step(iv) s ag(aj—by) a(a®—b?)
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0

Hy(x,0)/Hs, K(x)/2H

FIG. 7. Field distributions oH(x,0), shown

< as black lines, andK,(x)/2=7 H,(x,+0),

?N [ shown as gray lines, in three strips for which

< . b/a=0.7 andc/a=0.4: (&) 0<H, <H,, (b)

3 . ( Hia<Ha <Haza, (©) Hoa<Hq <Hi, (d) Hs

g ; ] <Ha <Hir, (@Hg<H, <Hs;, and (f) Hg

= RIEE i <H, <H- (magnified distribution in the inspt

gl | 1 e ) 3 ‘ The horizontal dot-dashed lines show the applied
© 3 ® ootl | . magnetic fieldH, .

Em +0.4 ; t i l\ M

?, i ~0.01

< 402 ; |  —

:t’:” | : { 4: i e

- S N I l 7777 ,l e J

Rat 0 H H ~ ~

= Do :

_galE i) P :stgp\(viﬁf RN }
-a -b —c 0 +c +b +a —-a -b —c 0 +c +b +a
Hi 1 Vfa(a,) . Vfa(cy) Hoa \/ 1 fa(a.) fa(c.)
He al-cil & C+ He © Va2-c2|a(a?-b2) c2(b2—c?)

~\/2(a+c)dlac. (45)

[ 26 a’—b? b°—c?
a2_C2<\/ a +\/ c ) (42)

When b?<a’?—ac+c?, step (i) terminates atH,=H,
<H,g, whereas whem?>a’—ac+c?, step(i) terminates
atH,=Hs<Hix.

Step (ii-A) for Ha<H,<Hys and P<a’-ac+c?

Step (ii-B) for Hg<H,;<H,g and b*>a?—ac+c? In
this step, a domelike distribution of magnetic flux is present
for |x|<1y,g in the inner strip, whereas no magnetic flux is
present in the outer strips. The parameters are givew by
=B=ayg and y=1y,g, Where O<y,p<c_, c<a,g<b,
and a,g and y,g are determined by the coupled equations

During this step, domelike distributions of magnetic flux areHy(a.,0)=H¢ andH,(c.,0)=Hg, which yield
present ab . <|x| < as,a in the outer strips, whereas no mag-

netic flux penetrates into the inner stfiig. 7(b)]. The pa-
rameters are given byw=a,,, B=b,, and y=0, where
b, <azx<a_, anda,, is determined byH,(a,,0)=Hs,

Hs\?

Ha

fs(ay)
a’(a?—b?)

2

a2
ap=ay

=a’—2(Hs/H,)%(a%>—c?) dla. (43
The magnetic momenn, is given by
my/m=—Hy(a?+b?+c?— ajy—b?)
=—H,c?—2(H%/H,)(a?~c?) dla. (44)

Step(ii-A) terminates whemd,(c,,0)=Hg atH,=H>,,
where

He/Ha=(a% — a2g) (% — v3p)/fa(as)

=(azg—c?)V(ct —y2p)fs(cs).  (46)
The magnetic momemnh, is given by
my /7= —Ha(a?+b%+c?—2a3z— y3p), (47)

wherea,g andy,g must be determined numerically from Eq.
(46). Step (ii-B) terminates wherw,z=b, at Hy,=Hg,
where

\/ 1 [ faan) (e
al—ci|(al-b})? (b-c?)?

- \/2(a+c)(b2—ac)5
- (aZ_bZ)(bZ_CZ) :

Step (iii) for (H,a or H,g) <H, <Hj. During this step,
domelike distributions of magnetic flux are present both for

HZB:
Hs

(48)
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|X| < y5 in the inner strip and . <|x| < a3 in the outer strips

[Fig. 7(c)]. The parameters are given hy=a5, B=b,

and y=vy3, where O0<vyz<c_, b, <az<a_, andajz and
v3 are determined by the coupled equatithga, ,0)=H;

andH,(c,,0)=Hg, which yield

b?)/f5(ay)

¢t/ fa(cy). (49

Hs/Ha=/(a% — ad)(ai — v3)(a% —
=\(a3—c?)(ci—y3) (b5 —

The magnetic moment is given by

my /7= —Ha(a?+b?+c?— a5—b% — »3)
=2H (a+b+c)s—2(H%H,)(a+c)s. (50

Step(iii) terminates whermg=a_ and y;=c_ atH,=H;,

=H¢/\2.

Step (iv) for H>H;,. The magnetic response is revers-

ible for H,>H,,. At H,=H,, the parameters arex

=a_, B=b,, and y=c_, and the magnetic fields at the
edges ardd,(a,,0)=H(b_,0)=H(c,,0)=Hs. The mag-

netic moment aH ,=H,, is given by

my/m=—H;,(a?+b?+c2—a? —b% —c?)

~—2H;(a—b+c)d. (51)

C. Three strips in a descending field

Step (v) for H<H, <Hj,. During this step, domelike

distributions of magnetic flux are present fg¢<|x|<a_ in
the outer strips and fdx|<c_ in the inner strig Fig. 7(d)].

These domelike flux distributions shrink &b, decreases.
Magnetic flux escapes from the inner strip and penetrates
into the slits. In turn, magnetic flux exits from the slits, pen-
etrates into the outer strips, flows outward along the oute
strips, and finally escapes from the strips at the outer edges,
Xx=*a. The parameters are given lay=a_, B=pBs, and

y=c_, wheregs is determined byH,(b_,0)=Hs,

H.\2 fa(b_)
2=p? (—S -
PR @bty —e)
=b2+26b[(He/H,)?—1]. (52)

The magnetic moment, is given by
my/m=—H,(a%+b?+c2—a — gi—c?)
=—2H,(a+b+c)s+2(HYH,)bs. (53

Step(v) terminates wherBs=a_ atH,=Hs, where

Hs \/ a(b_ ) \/ 205 .,
Hs a -

PHYSICAL REVIEW B 68, 024505 (2003

the outer strips, and annihilates at=+*a, because
Hy(a,,0)<0. The parameters are given ly= 5= ag and
y=c_, whereag is determined byH,(b_,0)=Hj,

H
a2=b? + H—S bz( Z ~b2+ (He/H,) V28b(a2—b?).
—C_
(55

Note thatag is real (and ag>a) for O<H,<Hj;, that @
—+o for Hy,— +0, and thatag is imaginary(i.e., a3<0)
for Hg<H,<0. The magnetic momem, is given by

my/m=—Hy(a?+b%+c?—2a5—c?)

=—H,(a?—b? +2H.\J26b(a®*—b?). (56)

In the thin-strip limitd/a—0, the remanent magnetic mo-
mentm,en,, given by Eq.(56) with H,=0, is the same as for
two strips, Eq.(32). Step (vi) terminates wherH,(a, ,0)
=—HgatH,=Hg<O0, where

\/f3<a+> \/f3<b>
a2—c2 Vbp2-¢?

20

—Hg
Hs ai—bz,

=(yJa—b) (57)

Step (vii) for H/<H, <Hg<0. During this step(not
shown in Fig. 7, the magnetic field at the outermost edges is
equal to the negative flux-entry fieltH (a,,0)=—Hg
Negative magnetic flux penetrates into the outer strlpxe at
a and flows entirely across the outer strips into the slits,
resulting in a reduction of magnetic flux in both the slits and
fhe center strip. The parametalt c_ is fixed, anda=p
2y s |mag|nary(| e., a7<0) wherea- is determined by

y(a+10)
Hs fa(ay)

> ~a?+(H¢/H,) V2sa(a?—b?).

(58

a§:a2 -
Ha Va2—¢c?

The magnetic moment is given by
my/7m=—Hy(a?+b?+c?—2a5—c?)
=-+H,(a?—b? +2H¢J26a(a’*—b?). (59

Step(vii) terminates whemv;=0 atH,=H,<0, where

_H7_ l 3(a+ J a _b2 (60)
Hs a2 Va2-c2 '

Step (vi) for H<H, <Hs. Throughout this step, no The magnetic field at the centét(0)=H(0,0), is positive
magnetic flux remains in the outer strips, but a domelikefor H,>H-, but becomes zero &t,=H-.
distribution of magnetic flux is still present fox| <c_ in the Step (viii) for Hy<H,; <H;<0. During this step, dome-
inner strip[Fig. 7(e)]. Magnetic flux afx|<b penetrates into like distributions of magnetic flux are present g§<|x|
the outer strips fronmx=*b, flows outward entirely across <c_ in the inner strip, whereas no magnetic flux is present
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in the inner region|x| < Bg [Fig. 7(f)]. The parameters are

given bya=0, B=Bg, andy=c_, wherefg is determined 050 @ |
by Hy(a+:o):_Hsv f‘(_
2 2 HS 2 f3(a+) S l".
Be=ai—|\ g 22 _2 o %
Ha/ a3 (a?2—c?) S
&
=a?—2(H¢/H,)%a?—b?)dla. (61)
The magnetic moment is given by - f ---- single strip
-0.5+ \/ two strips
my/w=—Ha(a2+b2+c2—/3§—c%) ‘ HaszA ‘—three‘strlps
~ —H,b2-2(H¥H,)(a>~b?)dla. (62 | | b
+0.5 bla =0.9 1
Step(viii ) terminates wheBg=c_ atH,=Hg<0, where \ c/a=038

dfa = 0.01

—Hg  fa(ay) 2(a?—b?)s
- 2_ 2, 2_ 2" (63
Hs a,(a®2-c?) a(a?-c?)
At H,=Hg, no magnetic flux is present in either the inner or
outer strips.

my/Hsa*
(=)

-=== single strip

Step (ix) for —H;<H, <Hg<<0. During this step, no -0.5+¢ two strips
magnetic flux is present in the strips, and the parameters are H,= HzAf — three strips
given by =0 and B8=y=B,. The paramete3,, deter- 02 0 02 04 06 08
mined by Hy(a,,0)=—Hg, is given by Bg(H,)=a; H,/H,

(—H,), wherea; is defined in Eq(39).

Behavior for H,;<—H;<0. The magnetic response of  FIG. 8. Hysteretic behavior of the magnetic momemtof three
two strips forH, <—H, in a descending field is very simi- strips as a function of the applied magnetic field. (a) Magneti-
lar to that forH,;>H; in an ascending field. The complex zation curves of a single strifglashed linefs two strips(gray solid
field and magnetic moment as functions of the applied fieldines) with b/a=0.7, and three stripéblack solid line$ with b/a
can be determined with the help of the symmetries=0.7 andc/a=0.5. (b) Magnetization curves a) but for b/a
H(ngal) =—H(¢ — HaT) and my(HaL) — my(_ Haw): =0.9 andc/a=0.8. The thickness of the strips dga=0.01.

respectively. magnetic fieldsH,, and we studied these in detail for in-

creasing fieldsH,; and decreasing fieldsl, . For two
strips, the complex field and the magnetic moment are given
Figure 8 shows hysteretin,-H, curves for three strips. by Egs.(14) and(15), respectively. The field-evolution pro-
In ascending magnetic fields bty = (Hz4 Or Hag), them,-  Cess proceeds in seven steps, as shown in Fig. 3. In decreas-
H, curves of three strips have additional kifleee arrow in  ing fieldsH,|, the edge barriers near the inner edges at
Fig. 8@a)] or peaks[see arrow in Fig. &)]. Such kink or ~=*b impede the exit of magnetic flux from the slit pg
peak structures do not appear in thg-H, curves for a <b into the strip atb<<[x|<a. The trapping of magnetic
single strip or two strips. They arise in three strips becaus@ux in the slitinH,, results in a positive remanent magnetic
the the edge barrier at the edges of the center stip (momentm,>0 atH, =0, rather than a zero remanent mo-
==*c¢) impede the entry of magnetic flux. In descendingment, which occurs for a single strip without slits. For two
fields H,,, on the other hand, the,-H, curves for three Strips, the remanent magnetic momentHgf; =0 is maxi-
strips are almost the same as those for two strips; the simmized whenb/a=1/,/3.
larity occurs because the edges of the center strip do not For three stripgi.e., strips afx|<c andb<|x|<a), the
impede the exit of magnetic flux. complex field and the magnetic moment are given by Egs.
In three strips, the edge barriers n@asr+a and+c are  (34) and(35), respectively. The field-evolution process pro-
effective in preventing the entry of magnetic fluxtty; , but ~ ceeds in ten steps, as shown in Fig. 6. The edge barriers at
are not effective in stopping the exit of magnetic flisHg, .~ Xx==b in H,, are effective in trapping magnetic flux as in
On the other hand, while the edgesxat +b do not impede two strips. In the thin-strip limit/a—0, the remanent mag-
entering magnetic flux itH,;, the edge barriers there are netic moment for three strips &t, =0 is the same as for

D. Magnetization curves of three strips

responsible for impeding flux exit A, . two strips. InH,;, the edge barriers at=+c impede the
penetration of magnetic flux into the inner strip. As a conse-
V1. CONCLUSION quence, them, of three strips inH,; exhibits kink or peak

structures that are not present for two strips.
We investigated field distributions and the magnetic mo- The above arguments for three strips can be extended to
ment my, of bulk-pinning-free strips with slits in applied an arbitrary number of strips. Consider a symmetric array of
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N coplanar strips of total width &, (N—1 slits), in which  films. The resulting model would be the thin-film analog of

the strip edges are at=x*a,, whereay_;<ay_,<--- the bulk-pinning model discussed in Ref. 12.
<aj;<agy. Superconducting strips occupy the regias 1
<|x|<a, with n even, and slits are a,,<|x|<a, with n ACKNOWLEDGMENTS

odd. The region spanning the centerlifg,<ay_; corre-

) ; : We thank H. Yamasaki for stimulating discussions. This
sponds to a superconducting strip for oddand a slit for
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